Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
FASEB J ; 37(8): e23092, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37482902

RESUMO

Increased endothelin-1 (ET-1) levels in patients with sickle cell disease (SCD) and transgenic mouse models of SCD contribute to disordered hematological, vascular, and inflammatory responses. Mineralocorticoid receptor (MR) activation by aldosterone, a critical component of the Renin-Angiotensin-Aldosterone-System, modulates inflammation and vascular reactivity, partly through increased ET-1 expression. However, the role of MR in SCD remains unclear. We hypothesized that MR blockade in transgenic SCD mice would reduce ET-1 levels, improve hematological parameters, and reduce inflammation. Berkeley SCD (BERK) mice, a model of severe SCD, were randomized to either sickle standard chow or chow containing the MR antagonist (MRA), eplerenone (156 mg/Kg), for 14 days. We found that MRA treatment reduced ET-1 plasma levels (p = .04), improved red cell density gradient profile (D50 ; p < .002), and increased mean corpuscular volume in both erythrocytes (p < .02) and reticulocytes (p < .024). MRA treatment also reduced the activity of the erythroid intermediate-conductance Ca2+ -activated K+ channel - KCa 3.1 (Gardos channel, KCNN4), reduced cardiac levels of mRNAs encoding ET-1, Tumor Necrosis Factor Receptor-1, and protein disulfide isomerase (PDI) (p < .01), and decreased plasma PDI and myeloperoxidase activity. Aldosterone (10-8 M for 24 h in vitro) also increased PDI mRNA levels (p < .01) and activity (p < .003) in EA.hy926 human endothelial cells, in a manner blocked by pre-incubation with the MRA canrenoic acid (1 µM; p < .001). Our results suggest a novel role for MR activation in SCD that may exacerbate SCD pathophysiology and clinical complications.


Assuntos
Anemia Falciforme , Doenças Vasculares , Humanos , Camundongos , Animais , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Células Endoteliais/metabolismo , Aldosterona/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Modelos Animais de Doenças , Camundongos Transgênicos , Doenças Vasculares/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Endotelina-1/metabolismo , Inflamação/metabolismo
2.
Front Immunol ; 14: 1124269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926339

RESUMO

Major Histocompatibility Complex (MHC) molecules have been proposed to play a role in Sickle Cell Disease (SCD) pathophysiology. Endothelial cells express MHC molecules following exposure to cytokines. SCD is characterized, in part, by vascular endothelial cell activation, increased oxidative stress, sickle cell adhesion, and excess levels of endothelin-1 (ET-1) contributing to vaso-occlusive crises. ET-1 activates endothelial cells, induces oxidative stress and inflammation, and alters erythrocyte volume homeostasis. However, the role of ET-1 on MHC regulation in SCD is unclear. We first studied two sickle transgenic knockout mouse models of moderate to severe disease phenotype, ßS-Antilles and Berkeley (BERK) mice. We observed significant increases in H2-Aa mRNA levels in spleens, lungs, and kidneys from transgenic sickle mice when compared to transgenic knockout mice expressing human hemoglobin A (HbA). Mice treated for 14 days with ET-1 receptor antagonists significantly reduced H2-Aa mRNA levels. We characterized the effect of ET-1 on MHC class II expression in the human endothelial cell line EA.hy926. We observed dose-dependent increases in the expression of MHC class II (HLA-DRA) and MHC transcription factor (CIITA) that were significantly blocked by treatment with BQ788, a selective blocker of ET-1 type B receptors. Chromatin immunoprecipitation studies in EA.hy926 cells showed that ET-1 increased Histone H3 acetylation of the HLA-DRA promoter, an event blocked by BQ788 treatment. These results implicate ET-1 as a novel regulator of MHC class II molecules and suggest that ET-1 receptor blockade represents a promising therapeutic approach to regulate both immune and vascular responses in SCD.


Assuntos
Anemia Falciforme , Células Endoteliais , Camundongos , Humanos , Animais , Receptor de Endotelina A/genética , Cadeias alfa de HLA-DR/genética , Células Endoteliais/metabolismo , Camundongos Transgênicos , Antígenos de Histocompatibilidade Classe II/metabolismo , Complexo Principal de Histocompatibilidade , Camundongos Knockout , RNA Mensageiro/metabolismo
3.
FASEB J ; 36(12): e22638, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36331552

RESUMO

Painful crises in sickle cell disease (SCD) are associated with increased plasma cytokines levels, including endothelin-1 (ET-1). Reduced red cell magnesium content, mediated in part by increased Na+ /Mg2+ exchanger (NME) activity, contributes to erythrocyte K+ loss, dehydration and sickling in SCD. However, the relationship between ET-1 and the NME in SCD has remained unexamined. We observed increased NME activity in sickle red cells incubated in the presence of 500 nM ET-1. Deoxygenation of sickle red cells, in contrast, led to decreased red cell NME activity and cellular dehydration that was reversed by the NME inhibitor, imipramine. Increased NME activity in sickle red cells was significantly blocked by pre-incubation with 100 nM BQ788, a selective blocker of ET-1 type B receptors. These results suggest an important role for ET-1 and for cellular magnesium homeostasis in SCD. Consistent with these results, we observed increased NME activity in sickle red cells of three mouse models of sickle cell disease greater than that in red cells of C57BL/J6 mice. In vivo treatment of BERK sickle transgenic mice with ET-1 receptor antagonists reduced red cell NME activity. Our results suggest that ET-1 receptor blockade may be a promising therapeutic approach to control erythrocyte volume and magnesium homeostasis in SCD and may thus attenuate or retard the associated chronic inflammatory and vascular complications of SCD.


Assuntos
Anemia Falciforme , Endotelina-1 , Camundongos , Animais , Endotelina-1/metabolismo , Magnésio/metabolismo , Desidratação/metabolismo , Camundongos Endogâmicos C57BL , Eritrócitos/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Sódio/metabolismo , Homeostase , Receptor de Endotelina B/metabolismo , Camundongos Transgênicos
4.
Am J Physiol Cell Physiol ; 323(3): C694-C705, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848620

RESUMO

Red cell volume is a major determinant of HbS concentration in sickle cell disease. Cellular deoxy-HbS concentration determines the delay time, the interval between HbS deoxygenation and deoxy-HbS polymerization. Major membrane transporter protein determinants of sickle red cell volume include the SLC12/KCC K-Cl cotransporters KCC3/SLC12A6 and KCC1/SLC12A4, and the KCNN4/KCa3.1 Ca2+-activated K+ channel (Gardos channel). Among standard inhibitors of KCC-mediated K-Cl cotransport, only [(dihydroindenyl)oxy]acetic acid (DIOA) has been reported to lack inhibitory activity against the related bumetanide-sensitive erythroid Na-K-2Cl cotransporter NKCC1/SLC12A2. DIOA has been often used to inhibit K-Cl cotransport when studying the expression and regulation of other K+ transporters and K+ channels. We report here that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also abrogate activity of the KCNN4/KCa3.1 Gardos channel in human and mouse red cells and in human sickle red cells. DIOA inhibition of A23187-stimulated erythroid K+ uptake (Gardos channel activity) was chloride-independent and persisted in mouse red cells genetically devoid of the principal K-Cl cotransporters KCC3 and KCC1. DIOA also inhibited YODA1-stimulated, chloride-independent erythroid K+ uptake. In contrast, DIOA exhibited no inhibitory effect on K+ influx into A23187-treated red cells of Kcnn4-/- mice. DIOA inhibition of human KCa3.1 was validated (IC50 42 µM) by whole cell patch clamp in HEK-293 cells. RosettaLigand docking experiments identified a potential binding site for DIOA in the fenestration region of human KCa3.1. We conclude that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also block the KCNN4/KCa3.1 Gardos channel in normal and sickle red cells.


Assuntos
Anemia Falciforme , Simportadores , Ácido Acético , Anemia Falciforme/tratamento farmacológico , Animais , Calcimicina , Cloretos/metabolismo , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Camundongos , Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/metabolismo
5.
Physiol Rep ; 10(14): e15362, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35851763

RESUMO

SLC26A4/Pendrin is the major electroneutral Cl- /HCO3- exchanger of the apical membrane of the Type B intercalated cell (IC) of the connecting segment (CNT) and cortical collecting duct (CCD). Pendrin mediates both base secretion in response to systemic base load and Cl- reabsorption in response to systemic volume depletion, manifested as decreased nephron salt and water delivery to the distal nephron. Pendrin-mediated Cl- /HCO3- exchange in the apical membrane is upregulated through stimulation of the ß-IC apical membrane G protein-coupled receptor, 2-oxoglutarate receptor 1 (OXGR1/GPR99), by its ligand α-ketoglutarate (αKG). αKG is both filtered by the glomerulus and lumenally secreted by proximal tubule apical membrane organic anion transporters (OATs). OXGR1-mediated regulation of Pendrin by αKG has been documented in transgenic mice and in isolated perfused CCD. However, aspects of the OXGR1 signaling pathway have remained little investigated since its original discovery in lymphocytes. Moreover, no ex vivo cellular system has been reported in which to study the OXGR1 signaling pathway of Type B-IC, a cell type refractory to survival in culture in its differentiated state. As Xenopus oocytes express robust heterologous Pendrin activity, we investigated OXGR1 regulation of Pendrin in oocytes. Despite functional expression of OXGR1 in oocytes, co-expression of Pendrin and OXGR1 failed to exhibit αKG-sensitive stimulation of Pendrin-mediated Cl- /anion exchange under a wide range of conditions. We conclude that Xenopus oocytes lack one or more essential molecular components or physical conditions required for OXGR1 to regulate Pendrin activity.


Assuntos
Ácidos Cetoglutáricos , Oócitos , Receptores Purinérgicos P2 , Transportadores de Sulfato , Animais , Ânions , Ácidos Cetoglutáricos/farmacologia , Camundongos , Oócitos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transportadores de Sulfato/metabolismo , Xenopus laevis
6.
Front Cell Dev Biol ; 10: 861644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445032

RESUMO

Hyperglycemia is associated with decreased Mg2+ content in red blood cells (RBC), but mechanisms remain unclear. We characterized the regulation of Mg2+ efflux by glucose in ex vivo human RBC. We observed that hemoglobin A1C (HbA1C) values correlated with Na+-dependent Mg2+ efflux (Na+/Mg2+ exchange) and inversely correlated with cellular Mg content. Treatment of cells with 50 mM D-glucose, but not with sorbitol, lowered total cellular Mg (2.2 ± 0.1 to 2.0 ± 0.1 mM, p < 0.01) and enhanced Na+/Mg2+ exchange activity [0.60 ± 0.09 to 1.12 ± 0.09 mmol/1013 cell × h (flux units, FU), p < 0.05]. In contrast, incubation with selective Src family kinase inhibitors PP2 or SU6656 reduced glucose-stimulated exchange activation (p < 0.01). Na+/Mg2+ exchange activity was also higher in RBC from individuals with type 2 diabetes (T2D, 1.19 ± 0.13 FU) than from non-diabetic individuals (0.58 ± 0.05 FU, p < 0.01). Increased Na+/Mg2+ exchange activity in RBC from T2D subjects was associated with lower intracellular Mg content. Similarly increased exchange activity was evident in RBC from the diabetic db/db mouse model as compared to its non-diabetic control (p < 0.03). Extracellular exposure of intact RBC from T2D subjects to recombinant peptidyl-N-glycosidase F (PNGase F) reduced Na+/Mg2+ exchange activity from 0.98 ± 0.14 to 0.59 ± 0.13 FU (p < 0.05) and increased baseline intracellular Mg content (1.8 ± 0.1 mM) to normal values (2.1 ± 0.1 mM, p < 0.05). These data suggest that the reduced RBC Mg content of T2D RBC reflects enhanced RBC Na+/Mg2+ exchange subject to regulation by Src family kinases and by the N-glycosylation state of one or more membrane proteins. The data extend our understanding of dysregulated RBC Mg2+ homeostasis in T2D.

7.
BMC Complement Med Ther ; 22(1): 101, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392889

RESUMO

BACKGROUND: Disordered endothelial cell activation plays an important role in the pathophysiology of atherosclerosis, cancer, sepsis, viral infections, and inflammatory responses. There is interest in developing novel therapeutics to regulate endothelial cell function in atherothrombotic, metabolic, vascular, and hematological diseases. Extracts from leaves of the Syzygium jambos (L.) Alston (S. jambos) trees have been proposed to treat cardiovascular diseases and diabetes through unclear mechanisms. We investigated the effects of the S. jambos extract on biomarkers of endothelial dysfunction and immune responses in the human endothelial cell line, EA.hy926. METHODS: Leaves of S. jambos were collected, concocted and lyophilized. To study the effects of S. jambos on endothelial cell activation, we used the human endothelial cell line. IL-6 levels were measured using qPCR and ELISA. PDI activity was measured using Insulin Turbidity and Di-E-GSSG assays. CM-H2DCFDA was used to study ROS levels. Migration assay was used to study S. jambos effect on ex vivo human polymorphonuclear and human mononuclear cells. RESULTS: Our results show that incubation of EA.hy926 cells with ET-1 led to a 6.5 ± 1.6 fold increase in IL-6 expression by qPCR, an event that was blocked by S. jambos. Also, we observed that ET-1 increased extracellular protein disulfide isomerase (PDI) activity that was likewise dose-dependently blocked by S. jambos (IC50 = 14 µg/mL). Consistent with these observations, ET-1 stimulated ex vivo human polymorphonuclear and mononuclear cell migration that also was dose-dependently blocked by S. jambos. In addition, ET-1 stimulation led to significant increases in ROS production that were sensitive to S. jambos. CONCLUSION: Our results suggest that the S. jambos extract represents a novel cardiovascular protective pharmacological approach to regulate endothelial cell activation, IL-6 expression, and immune-cell responses.


Assuntos
Syzygium , Biomarcadores , Células Endoteliais , Humanos , Interleucina-6 , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio
8.
Physiol Rep ; 10(5): e15186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35274823

RESUMO

Investigation of erythrocytes from spontaneous or engineered germ-line mutant mice has been instrumental in characterizing the physiological functions of components of the red cell cytoskeleton and membrane. However, the red blood cell expresses some proteins whose germline loss-of-function is embryonic-lethal, perinatal-lethal, or confers reduced post-weaning viability. Promoter regions of erythroid-specific genes have been used to engineer erythroid-specific expression of Cre recombinase. Through breeding with mice carrying appropriately spaced insertions of loxP sequences, generation of erythroid-specific knockouts has been carried out for signaling enzymes, transcription factors, peptide hormones, and single transmembrane span signaling receptors. We report here the use of Cre recombinase expression driven by the erythropoietin receptor (EpoR) promoter to generate EpoR-Cre;Kcc3f/f mice, designed to express erythroid-specific knockout of the KCC3 K-Cl cotransporter encoded by Kcc3/Slc12A6. We confirm KCC3 as the predominant K-Cl cotransporter of adult mouse red cells in mice with better viability than previously exhibited by Kcc3-/- germline knockouts. We demonstrate roughly proportionate preservation of K-Cl stimulation by hypotonicity, staurosporine, and urea in the context of reduced, but not abrogated, K-Cl function in EpoR-Cre;Kcc3f/f mice. We also report functional evidence suggesting incomplete recombinase-mediated excision of the Kcc3 gene in adult erythroid tissues.


Assuntos
Eritrócitos , Integrases , Receptores da Eritropoetina , Simportadores , Animais , Eritrócitos/metabolismo , Integrases/biossíntese , Integrases/sangue , Integrases/genética , Camundongos , Regiões Promotoras Genéticas , Receptores da Eritropoetina/sangue , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Simportadores/sangue , Simportadores/genética , Simportadores/metabolismo
9.
Pflugers Arch ; 474(5): 553-565, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35169901

RESUMO

Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca2+-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca2+] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.1, leading to cell shrinkage and accelerated deoxygenation-activated sickling.We found that hypoxic activation of Psickle recorded by cell-attached patch clamp in SS RBC is inhibited by extracellular apyrase, which hydrolyzes extracellular ATP. Hypoxic activation of Psickle was also inhibited by the pannexin-1 inhibitor, probenecid, and by the P2 antagonist, suramin. A Psickle-like activity was also activated in normoxic SS RBC (but not in control red cells) by bath pH 6.0. Acid-activated Psickle-like activity was similarly blocked by apyrase, probenecid, and suramin, as well as by the Psickle inhibitor, Grammastola spatulata mechanotoxin-4 (GsMTx-4).In vitro-differentiated cultured human sickle reticulocytes (SS cRBC), but not control cultured reticulocytes, also exhibited hypoxia-activated Psickle activity that was abrogated by GsMTx-4. Psickle-like activity in SS cRBC was similarly elicited by normoxic exposure to acid pH, and this acid-stimulated activity was nearly completely blocked by apyrase, probenecid, and suramin, as well as by GsMTx-4.Thus, hypoxia-activated and normoxic acid-activated cation channel activities are expressed in both SS RBC and SS cRBC, and both types of activation appear to be mediated or greatly amplified by autocrine or paracrine purinergic signaling.


Assuntos
Anemia Falciforme , Reticulócitos , Trifosfato de Adenosina/metabolismo , Anemia Falciforme/metabolismo , Apirase/metabolismo , Cátions/metabolismo , Células Cultivadas , Eritrócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipóxia/metabolismo , Probenecid/metabolismo , Reticulócitos/metabolismo , Suramina/metabolismo , Suramina/farmacologia
10.
Blood Cells Mol Dis ; 92: 102619, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768199

RESUMO

The molecular identity of Psickle, the deoxygenation-activated cation conductance of the human sickle erythrocyte, remains unknown. We observed in human sickle red cells that inhibitors of TRPA1 and TRPV1 inhibited Psickle, whereas a TRPV1 agonist activated a Psickle-like cation current. These observations prompted us to test the roles of TRPV1 and TRPA1 in Psickle in red cells of the SAD mouse model of sickle cell disease. We generated SAD mice genetically deficient in either TRPV1 or TRPA1. SAD;Trpv1-/- and SAD;Trpa1-/- mice were indistinguishable in appearance, hematological indices, and osmotic fragility from SAD mice. We found that deoxygenation-activated cation currents remained robust in SAD;Trpa1-/- and SAD;Trpv1-/- mice. In addition, 45Ca2+ influx into SAD mouse red cells during prolonged deoxygenation was not reduced in red cells from SAD;Trpa1-/- and SAD;Trpv1-/- mice. We conclude that the nonspecific cation channels TRPA1 and TRPV1 are not required for deoxygenation to stimulate Psickle-like activity in red cells of the SAD mouse model of sickle cell disease. (159).


Assuntos
Anemia Falciforme/metabolismo , Eritrócitos/patologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/patologia , Animais , Cátions/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo , Deleção de Genes , Humanos , Camundongos , Camundongos Knockout , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética
11.
Oxid Med Cell Longev ; 2021: 9912434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239697

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vessel remodeling; however, its severity and impact on survival depend on right ventricular (RV) failure. Resveratrol (RES), a polyphenol found in red wine, exhibits cardioprotective effects on RV dysfunction in PAH. However, most literature has focused on RES protective effect on lung vasculature; recent finding indicates that RES has a cardioprotective effect independent of pulmonary arterial pressure on RV dysfunction, although the underlying mechanism in RV has not been determined. Therefore, this study is aimed at evaluating sirtuin-3 (SIRT3) modulation by RES in RV using a monocrotaline- (MC-) induced PAH rat model. Myocyte function was evaluated by confocal microscopy as cell contractility, calcium signaling, and mitochondrial membrane potential (ΔΨm); cell energetics was assessed by high-resolution respirometry, and western blot and immunoprecipitation evaluated posttranslational modifications. PAH significantly affects mitochondrial function in RV; PAH is prone to mitochondrial permeability transition pore (mPTP) opening, thus decreasing the mitochondrial membrane potential. The compromised cellular energetics affects cardiomyocyte function by decreasing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and delaying myofilament unbinding, disrupting cell relaxation. RES partially protects mitochondrial integrity by deacetylating cyclophilin-D, a critical component of the mPTP, increasing SIRT3 expression and activity and preventing mPTP opening. The preserved energetic capability rescues cell relaxation by maintaining SERCA activity. Avoiding Ca2+ transient and cell contractility mismatch by preserving mitochondrial function describes, for the first time, impairment in excitation-contraction-energetics coupling in RV failure. These results highlight the importance of mitochondrial energetics and mPTP in PAH.


Assuntos
Antioxidantes/uso terapêutico , Cálcio/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Resveratrol/uso terapêutico , Sirtuína 3/metabolismo , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia
13.
Front Pharmacol ; 12: 627032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790790

RESUMO

The widespread distribution of heteroreceptor complexes with allosteric receptor-receptor interactions in the CNS represents a novel integrative molecular mechanism in the plasma membrane of neurons and glial cells. It was proposed that they form the molecular basis for learning and short-and long-term memories. This is also true for drug memories formed during the development of substance use disorders like morphine and cocaine use disorders. In cocaine use disorder it was found that irreversible A2AR-D2R complexes with an allosteric brake on D2R recognition and signaling are formed in increased densities in the ventral enkephalin positive striatal-pallidal GABA antireward neurons. In this perspective article we discuss and propose how an increase in opioid heteroreceptor complexes, containing MOR-DOR, MOR-MOR and MOR-D2R, and their balance with each other and A2AR-D2R complexes in the striatal-pallidal enkephalin positive GABA antireward neurons, may represent markers for development of morphine use disorders. We suggest that increased formation of MOR-DOR complexes takes place in the striatal-pallidal enkephalin positive GABA antireward neurons after chronic morphine treatment in part through recruitment of MOR from the MOR-D2R complexes due to the possibility that MOR upon morphine treatment can develop a higher affinity for DOR. As a result, increased numbers of D2R monomers/homomers in these neurons become free to interact with the A2A receptors found in high densities within such neurons. Increased numbers of A2AR-D2R heteroreceptor complexes are formed and contribute to enhanced firing of these antireward neurons due to loss of inhibitory D2R protomer signaling which finally leads to the development of morphine use disorder. Development of cocaine use disorder may instead be reduced through enkephalin induced activation of the MOR-DOR complex inhibiting the activity of the enkephalin positive GABA antireward neurons. Altogether, we propose that these altered complexes could be pharmacological targets to modulate the reward and the development of substance use disorders.

14.
Antioxidants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052545

RESUMO

Stress seems to contribute to Parkinson's disease (PD) neuropathology, probably by dysregulation of the hypothalamic-pituitary-adrenal axis. Key factors in this pathophysiology are oxidative stress and mitochondrial dysfunction and neuronal glucocorticoid-induced toxicity. The insulin-like growth factor II (IGF-II), a pleiotropic hormone, has shown antioxidant and neuroprotective effects in some neurodegenerative disorders. Our aim was to examine the protective effect of IGF-II on a dopaminergic cellular combined model of PD and mild to moderate stress measuring oxidative stress parameters, mitochondrial and neuronal markers, and signalling pathways. IGF-II counteracts the mitochondrial-oxidative damage produced by the toxic synergistic effect of corticosterone and 1-methyl-4-phenylpyridinium, protecting dopaminergic neurons from death and neurodegeneration. IGF-II promotes PKC activation and nuclear factor (erythroid-derived 2)-like 2 antioxidant response in a glucocorticoid receptor-dependent pathway, preventing oxidative cell damage and maintaining mitochondrial function. Thus, IGF-II is a potential therapeutic tool for treatment and prevention of disease progression in PD patients suffering mild to moderate emotional stress.

15.
Cells ; 11(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011592

RESUMO

Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of µ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.


Assuntos
Corpo Estriado/fisiologia , Morfina/farmacologia , Plasticidade Neuronal/fisiologia , Receptores de Dopamina D4/metabolismo , Animais , Benzamidas/farmacologia , Corpo Estriado/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Masculino , Morfina/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Piperazinas/farmacologia , Ratos Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores Opioides mu/metabolismo
16.
Vet Parasitol Reg Stud Reports ; 22: 100480, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33308758

RESUMO

The report presented herein documents the finding of mites in the nares of a Merlin (Falco columbarius) (Linnaeus, 1758; Falconiformes: Falconidae) during its capture for identification and ringing at the conservation reserve area in the municipality of Cansaburro, state of Veracruz, Mexico.The mites were collected from the nostril of the bird and identified as Boydaia falconis (Fain, 1956; Trombidiformes: Ereynetidae: Speleognathinae). There are few records of nasal mites in Faconiforms in North America. This is the first report of Boydaia falconis in falconiform hosts from Mexico. Further study is required on these mites to aid in our understanding of the biology, ecology and symbiotic relationships of speleognathine nasal mites.


Assuntos
Doenças das Aves/parasitologia , Falconiformes , Infestações por Ácaros/veterinária , Ácaros , Animais , Falconiformes/parasitologia , México
17.
Cells ; 9(5)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349279

RESUMO

In the 1980s and 1990s, the concept was introduced that molecular integration in the Central Nervous System could develop through allosteric receptor-receptor interactions in heteroreceptor complexes presents in neurons. A number of adenosine-dopamine heteroreceptor complexes were identified that lead to the A2A-D2 heteromer hypothesis of schizophrenia. The hypothesis is based on strong antagonistic A2A-D2 receptor-receptor interactions and their presence in the ventral striato-pallidal GABA anti-reward neurons leading to reduction of positive symptoms. Other types of adenosine A2A heteroreceptor complexes are also discussed in relation to this disease, such as A2A-D3 and A2A-D4 heteroreceptor complexes as well as higher order A2A-D2-mGluR5 and A2A-D2-Sigma1R heteroreceptor complexes. The A2A receptor protomer can likely modulate the function of the D4 receptors of relevance for understanding cognitive dysfunction in schizophrenia. A2A-D2-mGluR5 complex is of interest since upon A2A/mGluR5 coactivation they appear to synergize in producing strong inhibition of the D2 receptor protomer. For understanding the future of the schizophrenia treatment, the vulnerability of the current A2A-D2like receptor complexes will be tested in animal models of schizophrenia. A2A-D2-Simag1R complexes hold the highest promise through Sigma1R enhancement of inhibition of D2R function. In line with this work, Lara proposed a highly relevant role of adenosine for neurobiology of schizophrenia.


Assuntos
Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Esquizofrenia/metabolismo , Adenosina/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Dopamina/metabolismo , Humanos , Neurônios/metabolismo , Receptor A2A de Adenosina/fisiologia , Receptores de Dopamina D2/fisiologia , Esquizofrenia/fisiopatologia
18.
Oxid Med Cell Longev ; 2020: 1841527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089765

RESUMO

Pulmonary arterial hypertension (PAH) is a life-threatening disease that is characterized by an increase in pulmonary vascular pressure, leading to ventricular failure and high morbidity and mortality. Resveratrol, a phenolic compound and a sirtuin 1 pathway activator, has known dietary benefits and is used as a treatment for anti-inflammatory and cardiovascular diseases. Its therapeutic effects have been published in the scientific literature; however, its benefits in PAH are yet to be precisely elucidated. Using a murine model of PAH induced by monocrotaline, the macroscopic and microscopic effects of a daily oral dose of resveratrol in rats with PAH were evaluated by determining its impact on the lungs and the right and left ventricular function. While most literature has focused on smooth muscle cell mechanisms and lung pathology, our results highlight the relevance of therapy-mediated improvement of right ventricle and isolated cardiomyocyte physiology in both ventricles. Although significant differences in the pulmonary architecture were not identified either micro- or macroscopically, the effects of resveratrol on right ventricular function and remodeling were observed to be beneficial. The values for the volume, diameter, and contractility of the right ventricular cardiomyocytes returned to those of the control group, suggesting that resveratrol has a protective effect against ventricular dysfunction and pathological remodeling changes in PAH. The effect of resveratrol in the right ventricle delayed the progression of findings associated with right heart failure and had a limited positive effect on the architecture of the lungs. The use of resveratrol could be considered a future potential adjunct therapy, especially when the challenges to making a diagnosis and the current therapy limitations for PAH are taken into consideration.


Assuntos
Antioxidantes/uso terapêutico , Ecocardiografia/métodos , Pulmão/patologia , Hipertensão Arterial Pulmonar/prevenção & controle , Resveratrol/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia
20.
Blood Cells Mol Dis ; 81: 102389, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31835175

RESUMO

ß-thalassemia (ß-Thal) is caused by defective ß-globin production leading to globin chain imbalance, aggregation of free alpha chain in developing erythroblasts, reticulocytes, and mature circulating red blood cells. The hypochromic thalassemic red cells exhibit increased cell dehydration in association with elevated K+ leak and increased K-Cl cotransport activity, each of which has been linked to globin chain imbalance and related oxidative stress. We therefore tested the effect of genetic inactivation of K-Cl cotransporters KCC1 and KCC3 in a mouse model of ß-thalassemia intermedia. In the absence of these transporters, the anemia of ß-Thal mice was ameliorated, in association with increased MCV and reductions in CHCM and hyperdense cells, as well as in spleen size. The resting K+ content of ß-Thal red cells was greatly increased, and Thal-associated splenomegaly slightly decreased. Lack of KCC1 and KCC3 activity in Thal red cells reduced red cell density and improved ß-Thal-associated osmotic fragility. We conclude that genetic inactivation of K-Cl cotransport can reverse red cell dehydration and partially attenuate the hematologic phenotype in a mouse model of ß-thalassemia.


Assuntos
Simportadores/genética , Talassemia beta/genética , Anemia/prevenção & controle , Animais , Desidratação , Modelos Animais de Doenças , Eritrócitos/química , Eritrócitos/patologia , Camundongos , Fragilidade Osmótica , Fenótipo , Esplenomegalia , Simportadores/metabolismo , Talassemia beta/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...